

Motor Control with Arduino

A Case Study in Data-Driven Modeling and Control Design

Toledo, 22-II-2013

Why Data-Driven Control?

- Two approaches to modeling
 - First-principles: requires knowledge of math / physics of the system
 - Data-driven: requires measured input-output data
- Modeling from first-principles can get challenging

Demo: DC Motor Controller using Arduino Uno

Workflow

Hardware

Agenda

- Data Acquisition
 - Hardware setup
 - Run on Target Hardware
- System Identification
 - Linear model estimation
 - Nonlinear model estimation
- Controller Design
 - PID controller tuning
 - Desktop simulation with a nonlinear model
- Real-Time Testing and Controller Implementation
 - Deployment to Arduino Uno
 - Real-time controller evaluation

DATA ACQUISITION

Hardware Setup

Serial communication

Motor driver

Run on Target Hardware

A Simulink feature in R2012a that:

 Creates an executable file from a model, and runs it on target hardware

Pin 0

 Is available from the model's Tools menu

- Tools > Run on Target Hardware
- Uses a *Target Installer* to install support packages for specific target hardware

Requires Simulink®

Hardware Setup

SYSTEM IDENTIFICATION

Model Fidelity vs. Cost

- Model the dynamics that matter for your analysis
- Balance cost and model fidelity

Linear System Identification

- Create continuous-time transfer functions from data
- Use either time or frequency domain data containing an arbitrary number of inputs and outputs
- Estimate other linear models: state-space, process models, and parametric models

A Transfer Functions								
Model name: tf1 🥒								
Number of poles: 2								
Number of zeros: auto								
Continuous-time O Discrete-time (Ts = 0.08)								
▶ I/O Delay								
▼ Estimation Options								
Minimum	Maximum							
Fit frequency range: 0	39.2699							
☑ Display progress								
Estimate covariance								
Initial condition:								
Initialization method: iv								
Estimate Close	Help							

Hammerstein-Wiener structure

Example of NLARX model

y(t) = f[y(t-1), y(t-2), y(t-3), u(t-1), u(t-2)] + e(t)

Nonlinear System Identification

- Estimate Hammerstein-Wiener models and nonlinear ARX models
- Use a variety of dynamic nonlinearities such as wavelets, neural networks, piecewise linear, etc.
- Estimate signal saturation and deadzone behaviors affecting linear systems
- Use custom regressors in nonlinear ARX models for greater flexibility in modeling

Requires System Identification Toolbox™

-	🙏 Noi	nlinear Models							Ľ	
	Model	Type Estimation								
	Mode	structure: Nonline	ar ARX	Ŧ		I	Model na	me: nlarx1		
				_		:	Initial mo	del: <none></none>	•	
Regressors Model Properties										
	Inputs (u) Outputs (y) Specify delay and number of terms in standard regressors output temp:									
		Channel Name	Dela	эv	No. of	Terms	1	Resulting Regressors	ן ד	
	Inni	# Channolo		-,					-	
🭌 No	nline	ar Models						_ 🗆 ×		
Mode	і Туре	Estimation							HI	
🕶 Es	timatio	on Trace								
Iter	ation	Cost	Step Size	Opt	imality	Bisectio	ons	Fit (%) = 70.25	μL	
Initializing model parameters										
0	0.7038		513.8				20551 (1) = 0.007 333			
1		0.008178	0.9733	6.999		0				
2		0.008174	5.296	109		7		Algorithm Options		
3		0.008004	0.3582	41.13		1	-			
▼ Estimation Report										
Est	ima	tion of Nonli	near ARX	mod	el: nlar	x1			Ш	
Esti	mati	on Data: 'Dryerd	e' with 500 sa	amples.						
Mod	lel Co	onfiguration:								
Regressors for nonlinear block: All regressors. Nonlinearity: Sigmoid network with 10 units.										
F -12							-			
Mode	el Refi	nement								
Last estimated model: nlar×1										
Use last estimated model as initial model for next estimation										
Randomize initial model before estimation										
			Estimate		ose	Help				

CONTROLLER DESIGN

Automatic PID Tuning

- Automatically linearizes Simulink models and finds gain values to meet specifications
- Provides additional finetuning capability with simple sliders

Requires Simulink Control Design[™]

For more info, watch our webinar "PID Control Made Easy".

REAL-TIME TESTING AND CONTROLLER IMPLEMENTATION

Real-Time Testing

Summary

- MATLAB and Simulink support data-driven control design
- MATLAB and Simulink provide an environment for
 - Data acquisition
 - System identification
 - Control design
 - Real-Time testing